Climate Change

Chemical Principles I Laboratory

The laboratory portion of this course focuses on foundational principles and essential techniques of chemistry. These conceptual and technical tools have great relevance to many issues of importance to society, including climate change, human health, economic security, and more. SLS-related experiments in CHEM 1211K will be related to five threads of sustainability in chemistry: Green Chemistry, Chemistry and Society, Everyday Chemical Analysis, Computational Chemistry, and Climate Change.

Biodiversity Dynamics

Biodiversity Dynamics will be a project-based course will explore where plants and animals live on the landscape, and how and why they move or evolve in response to environmental changes and human impacts. We will use real species, landscape, climate, and human impact data to explore biogeographic rules, such as the latitudinal & elevation diversity gradients. We will also learn about how landscape ecologists use species distribution models and corridor models for conservation purposes.

Chemical Principles II Laboratory

The laboratory portion of this course focuses on foundational principles and essential techniques of chemistry.  These conceptual and technical tools have great relevance to many issues of importance to society, including climate change, human health, economic security, and more. SLS-related experiments in CHEM 1212K will be related to five threads of sustainability in chemistry: Green Chemistry, Chemistry and Society, Everyday Chemical Analysis, Computational Chemistry, and Climate Change.

Introduction to Environmental Science

Understanding our planet’s environment requires understanding how the whole Earth functions as an interconnected system. This course investigates the four components of the Earth system in detail: the atmosphere, the oceans, the solid Earth, and the biosphere to understand how these processes interact, and then how we, as humans, impact our planet.

Habitable Planet

The search for life beyond the Earth is reaching new heights. So what are we looking for, and how will we know when we find it? This course will explore the history of the solar system and the Earth as the one example of a habitable planet—one that can support living organisms—that we know now. We will consider how the planets formed, the important planetary processes that brought about the Earth as it was when life arose and the planet we live on today.

Pages

Subscribe to Climate Change